Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python
نویسندگان
چکیده
Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.
منابع مشابه
Pypes: Workflows for Processing Multimodal Neuroimaging Data
Every year, enormous amounts of scientific data are made available to the public (Poline et al., 2012). This trend is due to an increasing demand for transparency, efficiency, and reproducibility. Neuroimaging is a salient example of this trend. In response to the growing concern about the need of publishing relevant software codes (Ince et al., 2012) in the context of results’ reproducibility,...
متن کاملPyXNAT: XNAT in Python
As neuroimaging databases grow in size and complexity, the time researchers spend investigating and managing the data increases to the expense of data analysis. As a result, investigators rely more and more heavily on scripting using high-level languages to automate data management and processing tasks. For this, a structured and programmatic access to the data store is necessary. Web services ...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملPydpiper: a flexible toolkit for constructing novel registration pipelines
Using neuroimaging technologies to elucidate the relationship between genotype and phenotype and brain and behavior will be a key contribution to biomedical research in the twenty-first century. Among the many methods for analyzing neuroimaging data, image registration deserves particular attention due to its wide range of applications. Finding strategies to register together many images and an...
متن کاملThe Bioverse: An object-oriented genomic database and webserver written in Python
The recent success of numerous genomic sequencing efforts have created a great demand for systems to organize, represent and interpret the huge amount of data available. The Bioverse is a database designed to provide a framework for exploring the relationships among the molecular and genomic, proteomic, systems, and organismal worlds. We implemented the Bioverse in the open-source scripting lan...
متن کامل